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ABSTRACT

Spam in Online Social Networks (OSNs) is a systemic problem
that imposes a threat to these services in terms of undermining their
value to advertisers and potential investors, as well as negatively af-
fecting users’ engagement. In this work, we present a unique anal-
ysis of spam accounts in OSNs viewed through the lens of their
behavioral characteristics (i.e., profile properties and social inter-
actions). Our analysis includes over 100 million tweets collected
over the course of one month, generated by approximately 30 mil-
lion distinct user accounts, of which over 7% are suspended or re-
moved due to abusive behaviors and other violations. We show that
there exist two behaviorally distinct categories of twitter spammers
and that they employ different spamming strategies. The users in
these two categories demonstrate different individual properties as
well as social interaction patterns. As the Twitter spammers contin-
uously keep creating newer accounts upon being caught, a behav-
ioral understanding of their spamming behavior will be vital in the
design of future social media defense mechanisms.

Categories and Subject Descriptors

H.O [Information systems]: General; K.4.2 [Social issues]: Abuse
and crime involving computers; H.2.8 [Database Applications]:
Data mining
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1. INTRODUCTION

Spam exists across many types of electronic communication plat-
forms, including email, web discussion forums, text messages (SMS),
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and social media. Today, as social media continues to grow in pop-
ularity, spammers are increasingly abusing such media for spam-
ming purposes. According to a recent study [21], there was a 355%
growth in social spam during the first half of 2013. Twitter com-
pany’s initial public offering (IPO) filing indicates spam as a ma-
jor threat in terms of undermining their value to advertisers and
potential investors, as well as negatively affecting users’ engage-
ment [32].

While there is a growing literature on social media in terms of
developing tools for spam detection (e.g., [18,24,33]) and analyz-
ing spam trends (e.g., [27,37, 38]), spammers continue to evolve
and change their penetration techniques. Therefore, there is a con-
tinuous need for understanding the evolving and diverse properties
of malicious accounts in order to combat them properly [21,32].

In this paper, we present an empirical analysis of spam accounts
on Twitter, in terms of profile properties and social interactions.
The analysis includes identifying categories (sub-populations) of
spam accounts (see Section 4). Through profile analysis we iden-
tify distinct characteristics and patterns that pertain to different iden-
tified categories of Twitter accounts (see Section 5). We also exam-
ine the network properties of several social interactions (namely,
follow relationship and mention) to improve our understanding of
the methods used by spammers for reaching spam victims (see Sec-
tion 6).

To perform the study, we collected over 100 million tweets over
the course of one month (from March 5, 2013 to April 2, 2013)
generated by approximately 30 million distinct user accounts (see
Section 3). In total, over 7% of our dataset accounts are suspended
or removed accounts due in part to abusive behaviors and other vi-
olations. The summary and future work of our study discussed in
Section 8.

In summary, we frame our contributions as follows:

e We categorize spam accounts based on their behavioral ac-
tivities and find that Twitter spammers belong to two broad
behavioral categories. We observe that these categories of
spam accounts exhibit different spamming patterns and em-
ploy distinct strategies for reaching their victims, and should
therefore be analyzed separately and treated differently by
future social media defense mechanisms.
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Figure 1: Tweets received per day. On average, we receive 4 million tweets per day

e We analyze the different properties of spam accounts in terms
of their profile attributes and use the attributes of legitimate
accounts as a baseline. From this, we identify a cluster of
malicious accounts that seems to be originally created and
customized by legitimate users, whereas the other cluster de-
viates from the baseline significantly.

Through network analysis of multiple social interactions, we
reveal a set of diverse strategies employed by spammers for
reaching audiences. We focus on the mention function as it
is one of the most common ways in which spammers engage
with users, bypassing any requirement of sharing a social
connection (i.e., follow/following relationship) with a vic-
tim.

2. BACKGROUND

Twitter is a micro-blogging platform and an Online Social Net-
work (OSN), where users are able to send tweets (i.e., short text
messages limited to 140 characters). According to a recent study,
Twitter is the fastest growing social platform in the world [12]. In
2013, Twitter estimated the number of active users at over 200 mil-
lion, generating 500 million tweets per day [32].

Twitter spam is a systemic problem [27]. While traditional email
spam usually consists of spreading bulks of unsolicited messages
to numerous recipients, spam on Twitter does not necessarily com-
ply to the volume constraint, as a single spam message on Twitter
is capable of propagating through social interaction functions and
reach a wide audience. In addition, previous studies showed that
the largest suspended Twitter accounts campaigns directed users
via affiliate links to some reputable websites that generate income
on a purchase, such as Amazon [27]. Such findings blur the line
about what constitutes as OSN spam. According to the “Twitter
Rules”, what constitutes spamming will evolve as a response to new
tactics employed by spammers [31]. Some of the suspicious activi-
ties that Twitter considers as indications for spam [31] include: (1)
aggressive friending; (2) creating false or misleading content; (3)
spreading malicious links; and (4) trading followers.

Spam content can reach legitimate users through the following
functions: i) home timeline: a stream showing all tweets from those
being followed by the user or posts that contain @mention requir-
ing no prior follow relationship; ii) search timeline: a stream of
messages that matches a search query; iii) hashtags: tags used to
mark tweets with keywords or topics by incorporating the symbol #
prior to the relevant phrase (very popular hashtags are called trend-
ing topics); iv) profile bio: spam accounts generate large amounts
of relationships and favorite random tweets from legitimate users
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with the hope that victims would view the spammer account profile
which often contains a URL embedded in its bio or description; and
v) direct messages: private tweets that are sent between two users.

Accounts distributing spam are usually in the form of: 1) fraud-
ulent accounts that are created solely for the purpose of sending
spam; ii) compromised accounts created by legitimate users whose
credentials have been stolen by spammers; and iii) legitimate users
posting spam content. While, multiple previous studies focused on
fraudulent accounts(e.g., [27,28]), the compromised accounts are
more valuable to spammers as they are relatively harder to detect
due to their associated history and network relationships. On the
other hand, fraudulent accounts exhibit a higher anomalous behav-
ior at the account level, and hence are easier for detection [9].

3. DATASETS

Our Twitter dataset consists of 113,609,247 tweets, generated by
30,391,083 distinct users, collected during a one month period from
March 5th, 2013 to April 2nd, 2013 using the Twitter public stream
APIs [30]. For each tweet, we retrieve its associated attributes (e.g.,
tweet text, creation date, client used, etc.) as well as information
tied to the account who posted the tweet (e.g., the account’s number
of following, followers, date created, etc.). On average, we receive
over 4 million tweets per day. We lack data for some days due to
network outages, updates to Twitter’s API, and instability of the
collection infrastructure (using Amazon EC2 instances). A sum-
mary of tweets collected each day and outage periods is shown in
Figure 1.

In order to label spammer accounts in our dataset, we rely on
Twitter’s account suspension algorithm described in [27]. Given
that the implementation of the suspension algorithm is not pub-
licly available, we verify whether an account has been flagged as
spam by checking the user’s profile page. In case an account has
been suspended or removed, the crawler request will be redirected
to a page describing the user statues (i.e., suspended or does not
exist). While all of the removed/suspended user’s information is
no longer available through the Twitter’s API, we were able to re-
construct their information based on the collected sample. In total,
over 7% of our dataset are suspended/removed accounts. Although
the primary cause for suspension or deletion of Twitter accounts
is spam-activity, Twitter’s policy page states that other activities
such as publishing malicious links, selling usernames and using
obscene or pornographic images may also result in suspension or
deletion [31]. Removed accounts may include users that deacti-
vated their accounts during the data collection period.



4. IDENTIFYING SUB-POPULATIONS

The results of the initial analysis to compare the collective tweet-
ing patterns and social behavior of normal and malicious users
showed tendency for bi-modality in the case of spam accounts.
This was less evident in the case of legitimate users (see Figure 2).
This pattern occurs across multiple attributes (i.e., tweets count, fa-
vorites count, followers count, etc.). The bi-modal distributions
commonly arises as a mixture of uni-modal distributions corre-
sponding to mixture of populations. Accordingly, we separated the
sub-populations within spammers, using Gaussian Mixture Models
(GMM), in order to reveal distinct spamming strategies and behav-
iors.
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Figure 2: An illustration of different tweeting patterns and follow-
ing behaviors for normal and spam accounts.

In order to identify subsets of malicious accounts, we use Gaus-
sian Mixture Models (GMM). GMM is a probabilistic model that
assumes that data points are generated from a mixture of a finite
number of Gaussian distributions with unknown parameters. To
determine the number of components (i.e., sub-populations or clus-
ters) we fit multiple GMMs with different numbers of Gaussians
and then calculate the Bayesian Information Criteria (BIC) score
for each fit. The use of BIC penalizes models in terms of the num-
ber of parameters or complexity. Hence, complex models (i.e., high
number of free parameters) will have to compensate with how well
they describe the data. This can be denoted as follows:

BIC(M,) = —2-InP(x|M:) +1nN -k (1)

where x is the observed data, N is the number of observations, k is
the number of free parameters to be estimated and P(x|M,) is the
marginal likelihood of the observed data given the model M with ¢
number of components.

A GMM with two components and spherical covariance gives
the lowest BIC score (see Figure 3). The results of the clustering
exhibit two classes of spam accounts C; C C and C; C C, where C' is
the set of all accounts. We refer to the normal class (i.e., legitimate
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Figure 3: BIC scores for different numbers of components & co-
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accounts) as Cyprmar- The results of the separation in one dimension
(i.e., tweets count) is shown in Figure 4.

0.5
RN
1 A}
’ \ --- .
N 1 . C’L =1
04 1 ' s
s ] 1 s L o . b
b ' : . Ci_9
] \
] \
' [ f’Uzll
I vl
A.S 0.3+ A ‘:: g
QO i ¥
1 A
\ H, ] HR!
I I}
i o2f ! \ _
] 1
1 \
’ \
U 1
2 3 » e
0.1t s \ 3 |
S \ P
»
\
S
~
oo ~ ‘
00 anr*tl L L L L i L
10° 10* 10? 10° 10* 10° 108

Tweets count

Figure 4: The identified clusters in 1-d (tweets count) for the spam
accounts

Based on the separation, we can further investigate the proper-
ties and activity patterns of the different identified classes. This
separation aids in developing taxonomies and exploit meaningful
structures within the spam accounts communities.

S. PROFILE PROPERTIES

In order to further investigate the different identified classes, we
examine the Empirical Cumulative Distribution Functions (ECDF)
of different attributes for each class (see Figure 5). We find that
50% of the accounts in C; have less than 29 tweets, however, for
Crormai and Ca, 50% of the accounts have tweeted around 2000
times. Furthermore, we find that almost 90% of the accounts in C
have no favorites (i.e., tweets added to their favorites list), whereas
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Figure 5: Comparison between the three classes C1,Cy and Cy,,,mq in terms of tweeting and following behaviors after the GMM clustering

C and G show closely matching patterns, with 50% of the
accounts having less than 50 favorite tweets.

We continue to observe similar patterns across multiple attributes,
where Cp and C,,;mq have similar distributions and C; deviates
from the baseline. We explain this observation through the hypoth-
esis that C; mainly consists of compromised accounts, while Cj
consists of fraudulent accounts as defined in Section 2.

Table 1: Summary of basic profile attributes

Default ]?efault URL | Bio
profile | image
Coormal 22% 1.3% | 29% | 83.6%
C 76% 14% 4% 60%
G 36% 1.5% | 20% | 84.7%

The similarity between C,,,nq and Cy in the basic profile at-
tributes, such as the percentage of accounts with default profile set-
tings, default profile images, profile descriptions and profile URLs
(see Table 1) might indicate that C, accounts were originally cre-
ated and customized by legitimate users. For example, we notice
that only 22% of C,,,mq and 36% of C, accounts kept their default
profile settings unchanged, in comparison to 76% in the case of C.

6. SOCIAL INTERACTIONS

In this section we analyze users behavior in terms of the follow
relationship and mention functions, from the topological point of
view. We approach this by incorporating multiple measures that
are known to signify network characteristics (differences and sim-
ilarity). Through this analysis, we reveal sets of behavioral prop-
erties and diverse strategies employed by spammers for engaging
with victims and reaching audiences.

6.1 Preliminaries

Let G = (V,E) be the graph that represents the topological struc-
ture of a given function (i.e., follow or mention), where V is the set
of nodes and E is the set of edges. An edge in the graph is denoted
by e = (v,u) € E where v,u € V. Note that in the follow and men-
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tion networks, a node v corresponds to a Twitter user and an edge
corresponds to an interaction between a pair of users. If two nodes
have an edge between them, they are adjacent and we refer to them
as neighbors.

We define the neighborhood of node v as the sub-graph H =
(V/,E')|V' CV and E' C E that consists of all the nodes adjacent
to v (alters) excluding v (we refer to v as ego) and all the edges
connecting two such nodes. The 1.5 egocentric network Eq 5(v) of
node v is defined as the neighborhood sub-graph including v itself.
Therefore, the neighborhood can be denoted as N(v) := {u | (u,v) €
E or (v,u) € E} and the 1.5 ego network as E| 5(v) := {N(v)U{v}}.

Focusing on the egocentric networks around the nodes allows for
studying the local graphical structure of a given user and signifies
the types of interactions that develop within their social partners.
Figure 6 shows an illustration of different levels of egocentric net-
works. From this we can define node properties and measure the
relative importance of a node within its egocentric network such as
node degree d(v), node out-degree dy,;(v), in-degree dj,(v), and
reciprocal relationship dp;(v).

dour (V) = [{u | (v,u) € E1 5(v)}|
din(v) = [{u| (u,v) € E15(v)}]
d(v) =diy+dow @
dpi(v) = {u| (u,v) € E1s(v) A(v,u) € E15(v)}]

From the properties defined in equation 2 we can derive the in-
degree density density;,(v), out-degree density densityqy (v), and
the density of reciprocal relationships densityp;(v).

densityi,(v) = d;,,(f}v)
denSityout(V) = dZM(I‘E;) (3)
densityp;(v) = d;’(i‘;)

In addition, we calculate the betweenness centrality for each ego
node in order to quantify the control of such node on the communi-



cation between other nodes in the social network [10]. The measure
computes the fraction of the shortest paths that pass through the
node in a question v within its egocentric network E| 5(v). There-
fore, the betweenness centrality Cp(v) can be computed as [5]:

Guw(V)

GMW

Cp(v) = C)

u#weN(v)

where G, is the total number of shortest paths from node u to
node w and Gy,,(v) is the number of those paths that pass through
the node v. Therefore, Cp(v) = 0 in the case where all the alters are
directly connected to each other and Cp(v) = 1 when the alters are
only connected to each other through the ego node.

We also compute the closeness centrality Cc(v) which measures
the inverse of the sum of the shortest path distances between a node
v and all other nodes ug,uy,..,u, € N(v) normalized by the sum of
minimum possible distances. This can be formulated as follows:

Colr) =~ =L 5)
Y s(vu)
ueN(v)

where 6(u,v) is the shortest path distance between v and u, and n
is the number of nodes in the egocentric graph.

A network is strongly connected if there is a path between every
node to every other node in a directed graph. We define the num-
ber of strongly connected components in the egocentric networks
E| 5(v) and open neighborhood N (v) to be SCCE, ,(v) and SCCy (v)
respectively. By replacing all of the directed edges with undirected
edges, we compute the number of weakly connected components
for the egocentric network and open neighborhood as WCCk, , (v)
and WCC (v) respectively. The SCC and WCC are used to measure
the connectivity of a graph.

a) 1.0 Ego Network b) 1.5 Ego Network c) 2.0 Ego Network

Figure 6: An illustration of the a) 1.0 egocentric network; b) the 1.5
egocentric network; and c) the 2.0 egocentric network. The Ego
node is marked in red (diamond) and its connections (alters) are
marked in yellow (circles) and the alters’ connections are marked
in blue (triangles).

6.2 Relationship Graph

Twitter follow relationship is modeled as a directed graph, where
an edge between two nodes ¢ = (v,u) € E means that v is following
u. For the follow relationship, we only have the number of follow-
ers and following for each account, and not the actual relationship
list. Therefore, in order to compare relationships formed by both
C1 and C,, we aggregate following and follower data from both
classes.

Figure 7 shows the number of followers and following repre-
sented by the in-degree dj;, (follower) and out-degree d,,,; (follow-
ing) for each class. We find that spam accounts that belong to C;

37

Cy account
- Identity line

C, account
- Identity line

2500

20000

500

0 500 1000 1500 2000 2500 5000 10000 15000 20000

n m

(a) Followers d, vs. following d,,,, for C; and C, accounts.

CDF(C)

(b) Followers count Empirical Cumulative Distribution Function.

Figure 7: Illustration of the different relationship behaviors for Cy
and C;. We find that spam accounts that belong to C; are heav-
ily skewed towards following rather than followers or the identity
line. The effect of the number of following limit (i.e., 2000 dyy) is
apparent/observed in both classes.

are heavily skewed towards following rather than followers, which
could indicate a difficulty in forming reciprocal relationships. Fur-
thermore, we observe a low density;, for C; with an average of 0.16
and high density,,, with an average of 0.4. On the other hand, C;
has more balanced densities with approximately 0.5 for both.

While Twitter does not constrain the number of followers a user
could have, the number of following (i.e., dy,;) is limited [29]. Ev-
ery user is allowed to follow 2000 accounts in total; once an ac-
count reaches this limit, they require more followers in order to
follow more users [29]. This limit is based on the followers to fol-
lowing ratio.

Furthermore, as shown in Figure 7b, almost 50% of C; accounts
have no followers (i.e., they did not embed themselves within the
social graph) and almost 75% of these accounts have less than ten
followers. We find that C, accounts are more connected in terms of
social relationships, which makes them harder to detect and hence
contribute more content. These findings adhere to a known phe-
nomenon observed in multiple security contexts. For example, Alt-
shuler et al. [2] showed that in many cases (especially in social
networks), optimal attack strategies (i.e., causing greater damage



or spreading more spam content) exhibit slow spreading patterns
rather than spreading aggressively.

Table 2: Market prices for followers

Provider $-per-follower
Socialkik $0.024
BuyTwitterFriends $0.003
UnlimitedTwitterFollowers $0.02

The compromised account population that exists within C, can
utilize the associated history and network relationships of the orig-
inal account owner to aid them in increasing the visibility of their
spam content. It is also possible that fraudulent and compromised
accounts can gain more followers by purchasing them from on-
line services (see Table 2 for recent market prices) to evade detec-
tion [36,37].

6.3 Mention Graph

The mention function is one of the most common ways in which
spammers engage with users, unlike the Direct Messages (DM), it
bypasses any requirement of prior social connection with a victim.

The mention network is constructed as a simple, weighted, and
directed graph, such that an edge between two nodes ¢ = (v,u) € E
means that user v mentioned user u during our collection period.
We extract the 1.5 egocentric network Ej 5(v), where v are the ac-
counts in C; and C.

10°

10" 10°

10*

= (, Empirical Data
- Truncated power law
- Power law

C, Empirical Data
Power law

- Exponential
- Lognormal

- Truncated power low

Figure 8: The top figure shows the distribution of the frequency of
mentions d(v) for Cy (black circles) and C; (red triangles). The bot-
tom figures compare the empirical distribution obtained with best
fits of other heavy-tailed distributions (see Appendix A).

Figure 8 shows the degree distribution of the mention network.
Although multiple studies observed that the degree for the mention
network follows heavy-tailed distributions (e.g., [15]), in order to
understand the topological structure, we further investigate the con-
crete goodness of fit (see Appendix A). The scale-free nature of the
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mention network (i.e., degree distribution that follows a power law)
implies a very high heterogeneity level in user behavior, which is
expected for human activity phenomena [4,20]. In addition, the
figure shows a clear difference between the length of the tail of the
distributions between the two classes C; and C;.

Table 3: Comparing different centrality measures for the mention
network for C; and C; accounts

Betweenness (Cg) | Closeness (C¢)
Class u 9 u o
Cy 0.014 0.08 0.97 0.12
(&) 0.096 0.14 0.77 0.25

Table 3 compares two centrality measures for the mention net-
work, namely the betweenness Cp and closeness C¢ centralities.
‘We observe that the average betweenness centrality for C; is signifi-
cantly higher than Cj, which indicates that C; accounts target users
that mention each other (i.e., communities and clusters of users).
This is somewhat a surprising outcome, as we expect C, accounts
to utilize the associated relationships of the original account owner,
where the nodes in the neighborhood are real friends and are more
likely to mention one another. The relatively low betweenness in
C) can be explained by at least three possibilities:

1.2

BN C = C,

1.0

. 0.8

WCCy
IN|

Figure 9: The density of connected components in the mention net-
work for C; and Cy

e Conversations hijacking. We observe that 51.5% of the tweets
captured by C; contain mentions, and 43.3% of these men-
tions are replies. In addition, only 1.2% of their mentions
were reciprocated (densityp; = 0.0127), which arouses sus-
picion that C; accounts intrude on on-going conversations
between legitimate users, and thus have resulted in a low be-
tweenness centrality.

o Targeting hubs. Due to the scale-free nature (i.e., degree dis-
tribution that follows a power law) of the mention network,
mentioning or replying to hubs (nodes that are highly con-
nected to other nodes in the network) increase the chance that
the alters will be connected, and hence the low betweenness
score.

e Crawling profiles. It is also possible that C; accounts target
communities and connected users in the mention graph by
crawling profiles (i.e., visiting the followers/following lists
or users’ timeline of the seed targeted profile).



Figure 9 shows high average densities of strongly connected com-
ponents for both the egocentric network and the neighborhood net-
SCCy SCC, 5

IN| [Evs|
tion indicates a difficulty in forming reciprocal mention relation-
ships as discussed earlier. Also, a higher score in the densities of
WCCy WCC,

IN| [Evs|
the lower betweenness centrality score observed in Table 3.

The discrepancy in network measures (i.e., degree distribution,
centralities, and connectivity) between C; and C; indicates the ex-
istence of different strategies for reaching audiences employed by
each class accounts.

work in classes C; and ¢, (i.e., and ). This observa-

weakly connected components ( and ) for Cy explains

7. RELATED WORK

We discuss prior related work on OSNs’ spam and network anal-
ysis using the following categories: i) OSN organized spam cam-
paigns; ii) OSN spam accounts analysis; and iii) spam detection in
OSN . Although we focus on spam accounts analysis, our first in its
kind approach of spam behavioral categorization (i.e., identifying
sub-populations), analyzing the different classes of spam accounts,
and analyzing the mention interactions, all provide a unique view
in looking at spam trends in OSNs.

7.1 Spam in Social Networks

With the rapid growth of OSNs popularity, we are witnessing an
increased usage of these services to discuss issues of public inter-
est and hence shape public opinions [8]. This model of users as
an information contributors has provided researchers, news organi-
zations, and governments with a tool to measure (to some degree)
representative samples of populations in real time [1, 13, 17, 25].
However, Lumezanue et al. [16] identified propagandists Twitter
accounts that exhibit opinions or ideologies to either sway pub-
lic opinion, disseminate false information, or disrupt the conver-
sations of legitimate users. The study focused on accounts con-
nected to two political events: i) the 2010 Nevada senate race; and
ii) the 2011 debt-ceiling debate. A similar campaign has been an-
alyzed [26], in which spam accounts flood out political messages
following the announcement of Russia’s parliamentary election re-
sults. In addition, classical forms of abuse such as spam and crim-
inal monetization exist in Twitter including phishing scams [6],
spreading malware [22], and redirecting victims to reputable web-
sites via affiliate links [27] to generate income.

7.2 Social Network Spam Analysis

Due to the popularity of social media services, several studies
measured and analyzed spam in OSNs. Yang et al. [36] provided
an analysis of some of the evasive techniques utilized by spam-
mers, and discussed several detection features. In addition, Yang
et al. [37] performed an empirical analysis of the social relation-
ship in Twitter (i.e., following relationship) in the spam commu-
nity. The study showed that spam accounts follow each other and
form small-world networks. Stringhini et al. [23] examined Twitter
account markets, and investigated their association to abusive be-
haviors and compromised profiles. Thomas et al. [28] performed
a study in collaboration with Twitter to investigate the fraudulent
accounts marketplace. The study discussed prices, availability, and
fraud perpetrated by 27 merchants generating 127 to 459K US dol-
lars for their efforts over the course of ten months. In another
study [27], Thomas et al. examined tools, techniques, and support
infrastructure spam accounts rely upon to sustain their campaigns.
Surprisingly, the study showed that three of the largest spam cam-
paigns in Twitter direct users to legitimate products appearing on
reputable websites via affiliate links that generate income on a pur-
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chase (e.g., Amazon.com). However, the authors considered only
tweets that contained URLSs, and thus overlook malicious accounts
that employ other spamming strategies, such as: i) embedding non-
hyperlink URL by encoding the ASCII code for the dot; ii) follow
spam accounts that generate large amounts of relationships for the
hope the victim account would reciprocate the relationship or at
least view the criminal’s account profile which often has a URL
embedded in its bio. Ghosh et al. [11] investigated the spammers’
mechanism of forming social relationship (link framing) in Twitter,
and found that vast majority of spam accounts are followed by le-
gitimate users who reciprocate relationships automatically (social
capitalists). The dataset used in this study contained 41,352 sus-
pended Twitter accounts that posted a blacklisted URL. However,
Grier et al. [14] discussed the ineffectiveness of blacklisting at de-
tecting social network spam in a timely fashion.

7.3 Social Network Spam Detection

A number of detection and combating techniques proposed in the
literature rely on machine learning. Benevenuto et al. [3] manually
labeled 8,207 Twitter accounts, and developed a classifier to detect
spammers based on the URL and hashtag densities, followers to
following ratio, account-age, and other profile-based features. The
account-age and number of URLs sent were the most discriminat-
ing features. Stringhini et al. [24] created a diverse set of "honey-
profiles", and monitored activities across three different social net-
works (Facebook, Twitter, and MySpace) for approximately one
year. They also built a tool to detect spammers on Twitter and
successfully detected and deleted 15,857 spam accounts in collab-
oration with Twitter.

Another approach is presented by Xie et al. [35], where they de-
signed and implemented a system that recognizes legitimate users
early in OSNs. They utilized an implicit vouching process, where
legitimate users help in identifying other legitimate users. Finally,
Wanga et al. [34] investigated the feasibility of utilizing crowd-
sourcing as the enabling methodology for the detection of fraudu-
lent accounts. This study analyzed the detection accuracy by both
"experts" and "turkers" (i.e., workers from Amazon Mechanical
Turk under a variety of conditions.

8. SUMMARY AND FUTURE WORK

This paper presents a unique look at spam accounts in OSNs
through the lens of the behavioral characteristics, and spammers’
techniques for reaching victims. We find that there exist two main
classes of spam accounts that exhibit different spamming patterns
and employ distinct strategies for spreading spam content and reach-
ing victims. We found that C, (i.e. category 2 of spammers) and
Chormai (1.€. legitimate users) manifest similar patterns across mul-
tiple attributes. We attempt to explain this observation through the
hypothesis that C; mainly consists of compromised accounts, while
the accounts in Cy (i.e. category 1 of spammers) are fraudulent ac-
counts, as we find support for the hypothesis throughout our anal-
ysis of profile properties. In terms of the relationship graph, we
find that spam accounts that belong to C; are heavily skewed to-
wards following rather than followers, which indicates difficulty in
forming reciprocal relationships. Furthermore, we observe a low
in-degree density for Cy, while C; has a more balanced in/out de-
gree densities. We show that the betweenness centrality for C; in
the mention graph is significantly lower than C,, which might be a
result of hijacking conversations, targeting hubs, or crawling pro-
files.

We acknowledge that our analysis may contain some bias. We
have a partial view of the activities occurring during the data col-
lection period due to the at most 1% sampling limit imposed by



Twitter. However, the work of Morstatter et al. [19] showed that
the implications of using the Twitter Streaming API depend on the
coverage and type of analysis. Generally, the streaming API can
be sufficient to provide representative samples, that gets better with
higher coverage, for certain types of analysis (i.e., top hashtags,
topics, retweet network measures). Furthermore, we lack the abso-
lute ground truth labels for the accounts presented in the dataset and
primarily rely on Twitter’s suspension algorithm. This might im-
pose a lower bound on the number of spam accounts in our dataset
(i.e., uncaught spam accounts are treated as legitimate users). In
addition, there might be a fraction of legitimate users who deacti-
vated their accounts during the collection period, and hence would
be labeled as removed. We also lack the appropriate resolution
for important attributes used in the analysis; for example, we only
have the number of followers and following for each user, and not
the actual relationships list. We also acknowledge that some of the
explanations proposed in this work might lack rigorous validations,
due to the difficulties in thoroughly obtaining the motivations and
social actions of spam accounts. However, we believe that our first
in its kind analysis of twitter functions and spam behavioral catego-
rization describe well the current trends and phenomenon of OSN’s
spam and can be leveraged in designing OSN spam detectors and
resilient architectures.

In our future work, we will design and test alternative labeling
and validation mechanisms for the analyzed accounts. In addition,
we plan to further investigate the differences between the spam ac-
counts utilizing other interactions functions (e.g., hashtag, retweet,
and favorite). We also intend to quantify the success of spam cam-
paigns and explore the tools, techniques, and spam underground
markets utilized by spam accounts to spread their content and evade
many of the known detection mechanisms.
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APPENDIX

A. THE SCALE-FREE NATURE OF THE
MENTION NETWORK

We investigate the scale free nature of the mention network by
examining whether power law is the best description for our data’s
degree distribution. We achieved this by comparing the power
law fit to fits of other distributions using log-likelihood ratios R
and generating p-value p (the significance for this ratio) to specify
which fit is better [7] (see Table 4 and Figure 8). Generally, the
first distribution is a better fit when R > 0, alternatively the second
distribution should be preferred when R < 0. We find for C; is sig-
nificantly (with p = 1.87173) best described as a truncated power
law distribution. As for the case of C; power law is insignificantly
better describer than truncated power (p = 0.9).

Table 4: Comparing different heavy-tailed distributions for the de-
gree distribution of the mention network.

Candidates Class R P

Power law vs Exponential Cy 193.8 | < 10710
Power law vs Trunc. power law Ci 0.03 0.9

Power law vs Exponential &) 457 | <1010
Power law vs Trunc. power law (&) —682 | <1010
Power law vs Lognormal C —111 | <10710
Trunc. power law vs Lognormal G 28.1 1.87173






